



STACK EMISSIONS TESTING

Circular Plastics Australia, Ettamogah, NSW, 2640

CPA Albury EPA Licence Compliance

PACT Recycling Joint Ventures

DOCUMENT CONTROL

Prepared by: Trinity Consultants Australia ABN 62 630 202 201 A: 11 / 35 Ingleston Rd. Wakerley, QLD 4154 T: +61 7 3255 3355 E: brisbane@trinityconsultants.com

Date	Description	Prepared	Checked
18/11/2024	Internal Draft	Mitchell Steele	-
19/11/2024	Final	Mitchell Steele	GH
	18/11/2024	18/11/2024 Internal Draft	18/11/2024 Internal Draft Mitchell Steele

Document Approval	
Approver Signature	Gital
Name	Gary Hall
Title	Manager – Air Monitoring

NATA Accreditation Number: 15841

Accredited for compliance with ISO/IEC 17025 - Testing

Should you have any queries regarding the contents of this document, please contact Trinity Consultants Australia.

COPYRIGHT AND DISCLAIMERS

This report has been prepared by Trinity Consultants Australia (Trinity) with all reasonable skill, due care and diligence in accordance with Trinity Quality Assurance Systems, based on ISO 9001:2015. This report and the copyright thereof are the property of Trinity and must not be copied in whole or in part without the written permission of Trinity.

This report takes account of the timescale, resources and information provided by the Client, and is based on the interpretation of data collected, which has been accepted in good faith as being complete, accurate and valid.

Trinity disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

This report has been produced specifically for the Client and project nominated herein and must not be used or retained for any other purpose. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from Trinity.

CONTENTS

1.	INTR	ODUCTION	4
2.		IODOLOGY	
	2.1	Emission Testing	5
	2.2	Laboratory Analysis	5
		Deviation from Methods	
	2.4	Process Conditions	5
3.		TORING RESULTS	
	3.1	Introduction	
		3.1.1 EPA 5	6
		3.1.2 EPA 6	7
		3.1.3 EPA 7	8
		3.1.4 EPA 8	
	3.2	Accuracy of Monitoring Results1	0

APPENDICES

Appendix A Glossary

TABLES

Table -1: Summary of Results	3
Table 1-1: Monitoring Locations and Parameters	
Table 2-1: Summary of Emission Monitoring Methods	5
Table 2-2: Table of NATA Accredited Laboratories with NATA Accreditation Number	5
Table 3-1: Flow and Sample Characteristics for Release Point EPA 5	6
Table 3-2: Emissions Monitoring Results for Release Point EPA 5	6
Table 3-3: Flow and Sample Characteristics for Release Point EPA 6	7
Table 3-4: Emissions Monitoring Results for Release Point EPA 6	
Table 3-5: Flow and Sample Characteristics for Release Point EPA 7	8
Table 3-6: Emissions Monitoring Results for Release Point EPA 7	
Table 3-7: Flow and Sample Characteristics for Release Point EPA 8	9
Table 3-8: Emissions Monitoring Results for Release Point EPA 8	9
Table 3-13: Estimated Method Uncertainties for Release Point EPA 5 1	
Table 3-14: Estimated Method Uncertainties for Release Point EPA 6 1	0
Table 3-15: Estimated Method Uncertainties for Release Point EPA 7 1	0
Table 3-16: Estimated Method Uncertainties for Release Point EPA 8 1	0

EXECUTIVE SUMMARY

PACT Recycling Joint Ventures commissioned Trinity Consultants to undertake monitoring of air emissions at their Ettamogah, NSW facility. Testing was completed to determine compliance with the Environmental Licence for the site (21519). Table 1 below provides a summary of the testing of emissions completed on 28 and 29 October 2024.

EPA stack 9 and EPA 10 have been decommissioned and are no longer operational. No flows were recorded in either of these stacks.

Table -1: Summary of Results

EPA No.	Site Description	Compound	Measured Value	Licence Limit	Units
		Total Solid Particles	3.1	50	mg/Nm ³
5	Stack 5a (Boiler)	Nitrogen Oxides (expressed as NO_2)	31	350	mg/Nm ³
		Carbon Monoxide	6.1	125	mg/Nm ³
	6 Stack 5b (Boiler)	Total Solid Particles	<0.001	50	mg/Nm ³
6		Nitrogen Oxides (expressed as NO_2)	120	350	mg/Nm ³
	Carbon Monoxide	13	125	mg/Nm ³	
7	J Stack 7a (Starlinger Flue	Total Solid Particles	2.8	50	mg/Nm ³
7 gas)	Total Organic compounds (VOC's)	<0.09	40	mg/Nm ³	
8 Stack 7b (Starlinger Vacuum unit)	Stack 7b (Starlinger	Total Solid Particles	72	50	mg/Nm ³
	Vacuum unit)	Total Organic compounds (VOC's)	54	40	mg/Nm ³

1. INTRODUCTION

PACT Recycling Joint Ventures commissioned Trinity Consultants Australia Pty Ltd to conduct monitoring of air emissions from their Ettamogah, NSW Facility. Table 1-1 details the monitoring locations and the monitoring performed at each location. The monitoring was completed on 28 and 29 October 2024.

ters

Commonia	Release Point			
Compound	EPA 5	EPA 6	EPA 7	EPA 8
Velocity, Flowrate and Temperature	\checkmark	√	\checkmark	\checkmark
Oxygen and Carbon Dioxide	\checkmark	\checkmark	\checkmark	\checkmark
Moisture Content	\checkmark	√	\checkmark	\checkmark
Particulates	\checkmark	√	\checkmark	\checkmark
Oxides of Nitrogen (NO, NO ₂ , NO _x)	\checkmark	1	\checkmark	√
Carbon Monoxide	\checkmark	√	\checkmark	\checkmark
Volatile Organic Compounds (VOC)	-	-	\checkmark	\checkmark

The monitoring of air emissions at the Ettamogah Facility was completed during normal operating conditions. Any factors that may have affected the monitoring results were not observed by, or brought to the notice of Trinity Consultants Australia staff except where noted in this report.

Figure 1 – EPA 9 & EPA 7

Figure 3 – EPA 8 and EPA 10

2. METHODOLOGY

2.1 Emission Testing

Table 2-1 below lists the Methods used when undertaking emission monitoring at the Ettamogah Facility.

All air quality monitoring undertaken by Trinity Consultants Australia staff has been undertaken in accordance with the methods identified in Table 2-1 below unless as specified in Section 2.3.

Table 2-1: Summary of Emission Monitoring Methods

Measurement Parameter	Method Equivalency
Sampling Positions	NSW EPA TM-1 (AS4323.1-2021 Selection of sampling positions and measurement of velocity in stacks)
Velocity, Flowrate and Temperature	NSW EPA TM-2 (US EPA Method 2 Measurement of velocity in stacks)
Oxygen and Carbon Dioxide	NSW EPA TM24 and 25 (USEPA Method 3a Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources)
Moisture Content	NSW EPA TM-23 (USEPA Method 4 Determination of Moisture Content in Stack Gases)
Particulates	NSW EPA TM-25 (AS4323.2-2021 Determination of Particulate Matter Emissions from Stationary Sources)
Oxides of Nitrogen (NO, NO ₂ , NO _x)	NSW EPA TM-11 (USEPA Method 7E Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)
Carbon Monoxide (CO)	NSW EPA TM-32 (USEPA Method 10 Determination of Carbon Monoxide Emissions from Stationary Sources)
Volatile Organic Compounds (VOC)	NSW EPA TM-34 (USEPA Method 18 Measurement of Gaseous Organic Compounds) by Gas Chromatography)

2.2 Laboratory Analysis

Table 2-2 provides a list of the NATA accredited laboratories that performed the applicable analysis, NATA accreditation number, and report number.

Table 2-2: Table of NATA Accredited Laboratories with NATA Accreditation Number

Measurement Parameter	NATA Accreditation Number	Report Number
Volatile Organic Compounds (VOC)	National Measurement Institute- 198	RN1446957

2.3 Deviation from Methods

None.

2.4 Process Conditions

Sampling was conducted under normal process conditions. Sampling at each location was only conducted after the operator confirmed production was normal. Circular plastics retains their records of process conditions.

3. MONITORING RESULTS

3.1 Introduction

The following sections present a summary of results for each sampling location.

3.1.1 EPA 5

Results of emissions monitoring for Release Point EPA 5 are provided in Table 3-1 and Table 3-2 below for emissions monitoring completed on 29 October 2024.

Parameter	Monitoring Result	Units
Run Start Time	09:01	hh:mm
Run Stop Time	10:01	hh:mm
Meter Calibration Factor	1.025	-
Pitot Tube Coefficient	0.84	-
Nozzle Diameter	12.42	mm
Total Meter Volume	0.959	m ³
Average Meter Temperature	21	°C
Average Stack Temperature	227	°C
Barometric Pressure	746.76	mm Hg
Stack Static Pressure	-0.8	mm H ₂ O
Calculated Stack Moisture	10.4	%
Carbon Dioxide Percentage	7.85	%
Oxygen Percentage	6.43	%
Dry Gas Molecular Weight	29.51	g/g-mole
Wet Stack Gas Molecular Weight	28.31	g/g-mole
Average Stack Gas Velocity	4.5	m/s
Stack Diameter	0.250	m
Actual Stack Flow Rate	13	m³/min
Dry Standard Stack Flow Rate	6.4	Nm ³ /min
Percent of Isokinetic Rate	97.7	%

Table 3-2: Emissions Monitoring Results for Release Point EPA 5

Compound	Emission Concentration (mg/Nm ³)	Emission Rate (g/min)	Emission Rate (g/s)
Particulates	3.1	0.02	0.0003
NO _x (expressed as NO ₂)	31	0.2	0.0033
Carbon Monoxide	6.1	0.039	0.00065

3.1.2 EPA 6

Results of emissions monitoring for Release Point EPA 6 are provided in Table 3-3 and Table 3-4 below for emissions monitoring completed on 29 October 2024.

Parameter	Monitoring Result	Units
Run Start Time	10:10	hh:mm
Run Stop Time	11:10	hh:mm
Meter Calibration Factor	1.025	-
Pitot Tube Coefficient	0.84	-
Nozzle Diameter	12.42	mm
Total Meter Volume	0.896	m ³
Average Meter Temperature	23	°C
Average Stack Temperature	188	°C
Barometric Pressure	746.76	mm Hg
Stack Static Pressure	-0.8	mm H ₂ O
Calculated Stack Moisture	10.2	%
Carbon Dioxide Percentage	7.69	%
Oxygen Percentage	6.71	%
Dry Gas Molecular Weight	29.47	g/g-mole
Wet Stack Gas Molecular Weight	28.33	g/g-mole
Average Stack Gas Velocity	3.2	m/s
Stack Diameter	0.250	m
Actual Stack Flow Rate	9.4	m³/min
Dry Standard Stack Flow Rate	4.9	Nm³/min
Percent of Isokinetic Rate	96.6	%

Table 3-3: Flow and Sample Characteristics for Release Point EPA 6

Table 3-4: Emissions Monitoring Results for Release Point EPA 6

Compound	Emission Concentration (mg/Nm ³)	Emission Rate (g/min)	Emission Rate (g/s)
Particulates	<0.001	<0.000006	<0.000001
NO_x (expressed as NO_2)	120	0.61	0.01
Carbon Monoxide	13	0.065	0.0011

3.1.3 EPA 7

Results of emissions monitoring for Release Point EPA 7 are provided in Table 3-5 and Table 3-6 below for emissions monitoring completed on 28 October 2024.

Parameter	Monitoring Result	Units
Run Start Time	12:21	hh:mm
Run Stop Time	13:25	hh:mm
Meter Calibration Factor	1.025	-
Pitot Tube Coefficient	0.84	-
Nozzle Diameter	9.51	mm
Total Meter Volume	1.625	m ³
Average Meter Temperature	28	°C
Average Stack Temperature	152	°C
Barometric Pressure	742.56	mm Hg
Stack Static Pressure	-3.1	mm H ₂ O
Calculated Stack Moisture	1.315	%
Carbon Dioxide Percentage	0.01	%
Oxygen Percentage	21.00	%
Dry Gas Molecular Weight	28.84	g/g-mole
Wet Stack Gas Molecular Weight	28.70	g/g-mole
Average Stack Gas Velocity	9.1	m/s
Stack Diameter	0.500	m
Actual Stack Flow Rate	110	m³/min
Dry Standard Stack Flow Rate	66.3	Nm ³ /min
Percent of Isokinetic Rate	96.7	%

Table 3-5: Flow and Sample Characteristics for Release Point EPA 7

Table 3-6: Emissions Monitoring Results for Release Point EPA 7

Compound	Emission Concentration (mg/Nm ³)	Emission Rate (g/min)	Emission Rate (g/s)
Particulates	2.8	0.19	0.0031
Volatile Organic Compounds	<0.09	<0.006	<0.0001

3.1.4 EPA 8

Results of emissions monitoring for Release Point EPA 8 are provided in Table 3-7 and Table 3-8 below for emissions monitoring completed on 28 October 2024.

Parameter	Monitoring Result	Units
Run Start Time	14:15	hh:mm
Run Stop Time	15:15	hh:mm
Meter Calibration Factor	1.025	-
Pitot Tube Coefficient	0.84	-
Nozzle Diameter	12.42	mm
Total Meter Volume	0.863	m ³
Average Meter Temperature	36	°C
Average Stack Temperature	37	°C
Barometric Pressure	743.46	mm Hg
Stack Static Pressure	0.1	mm H ₂ O
Calculated Stack Moisture	1.3	%
Carbon Dioxide Percentage	0.10	%
Oxygen Percentage	20.87	%
Dry Gas Molecular Weight	28.85	g/g-mole
Wet Stack Gas Molecular Weight	28.72	g/g-mole
Average Stack Gas Velocity	1.9	m/s
Stack Diameter	0.100	m
Actual Stack Flow Rate	0.91	m³/min
Dry Standard Stack Flow Rate	0.78	Nm ³ /min
Percent of Isokinetic Rate	100.0	%

Table 3-7: Flow and Sample Characteristics for Release Point EPA 8

Table 3-8: Emissions Monitoring Results for Release Point EPA 8

Compound	Emission Concentration (mg/Nm ³)	Emission Rate (g/min)	Emission Rate (g/s)
Particulates	72	0.056	0.00094
Volatile Organic Compounds	54	0.042	0.0007

3.2 Accuracy of Monitoring Results

Tables 3-13 to 3-16 present a summary of the estimated method uncertainties for each of the monitoring parameters and location.

Measurement Parameter	Method	% Uncertainty	Uncertainty	Units
Oxygen	USEPA Method 3A	2%	0.36	%
Carbon Dioxide	USEPA Method 3A	2%	0.43	%
Oxides of Nitrogen (NO, NO ₂ , NO _x)	USEPA Method 7E	2%	0.8	ppm
Carbon Monoxide	USEPA Method 10	2%	0.9	ppm
Particulates	AS 4323.2	10%	0.83	mg/Nm ³

Table 3-9: Estimated Method Uncertainties for Release Point EPA 5

Table 3-10: Estimated Method Uncertainties for Release Point EPA 6

Measurement Parameter	Method	% Uncertainty	Uncertainty	Units
Oxygen	USEPA Method 3A	2%	0.13	%
Carbon Dioxide	USEPA Method 3A	2%	0.15	%
Oxides of Nitrogen (NO, NO ₂ , NO _x)	USEPA Method 7E	2%	2.5	ppm
Carbon Monoxide	USEPA Method 10	2%	0.7	ppm
Particulates	AS 4323.2	10%	0.88	mg/Nm ³

Table 3-11: Estimated Method Uncertainties for Release Point EPA 7

Measurement Parameter	Method	% Uncertainty	Uncertainty	Units
Oxygen	USEPA Method 3A	2%	0.42	%
Carbon Dioxide	USEPA Method 3A	2%	2.30	%
Particulates	AS 4323.2	10%	0.51	mg/Nm ³
VOC's	USEPA 18	8%	0.09	mg/Nm ³

Table 3-12: Estimated Method Uncertainties for Release Point EPA 8

Measurement Parameter	Method	% Uncertainty	Uncertainty	Units
Oxygen	USEPA Method 3A	2%	0.42	%
Carbon Dioxide	USEPA Method 3A	2%	0.23	%
Particulates	AS 4323.2	10%	3.51	mg/Nm ³
VOC's	USEPA 18	8%	4.5	mg/Nm ³

APPENDIX A GLOSSARY

Parameter or Term	Description
<	The analytes tested for was not detected, the value stated is the reportable limit of detection
μg	Micrograms (10 ⁻⁶ grams)
AS	Australian Standard
dscm	dry standard cubic meters (at 0°C and 1 atmosphere)
g	grams
kg	kilograms
m	metres
m ³	Cubic Metres, actual gas volume in cubic metres as measured.
mg	Milligrams
min	Minute
mg/m ³	Milligrams (10 ⁻³) per cubic metre.
mmH₂O	Millimetres of water
Mole	The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly 6.022 140 76 x 10^{23} elementary entities. This number is the fixed numerical value of the Avogadro constant, N _A , when expressed in the unit mol ⁻¹ and is called the Avogadro number. The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles. This definition implies the exact relation N _A = 6.022 140 76 x 10^{23} mol ⁻¹ . Inverting this relation gives an exact expression for the mole in terms of the defining constant N _A :
	$1 \text{ mol} = \left(\frac{6.022 140 76 \times 10^{23}}{N_{\text{A}}}\right)$ The effect of this definition is that the mole is the amount of substance of a system that contains 6.022 140 76 x 10 ²³ specified elementary entities.
N/A	Not Applicable
ng	Nanograms (10 ⁻⁹ grams)
Nm ³	Normalised Cubic Metres - Gas volume in dry cubic metres at standard temperature and pressure (0°C and 101.3 kPa).
ou	Odour Units
°C	Degrees Celsius
µg/m³	Micrograms (10 ⁻⁶) per cubic metre. Conversions from μ g/m ³ to parts per volume concentrations (ie, ppb) are calculated at 25 °C.
ppb / ppm	Parts per billion / million.
PM	Particulate Matter.
PM ₁₀ , PM _{2.5} , PM ₁	Fine particulate matter with an equivalent aerodynamic diameter of less than 10, 2.5 or 1 micrometres respectively. Fine particulates are predominantly sourced from combustion processes. Vehicle emissions are a key source in urban environments.
sec	Second
Sm ³	Standardised Cubic Metres - Gas volume in dry cubic metres at standard temperature and pressure (0°C and 101.3 kPa) and corrected to a standardised value (e.g. 7% O_2).
STP	Standard Temperature and Pressure (0°C and 101.3 kPa).
TVOC	Total Volatile Organic Compounds. These compounds can be both toxic and odorous.
USEPA	United States Environmental Protection Agency

BRISBANE

A: Level 3, 43 Peel Street South Brisbane, QLD 4101 T: +61 7 3255 3355 E: brisbane@trinityconsultants.com

GLADSTONE (Vision Environment)

A: Unit 3, 165 Auckland Street PO Box 1267 Gladstone, QLD, 4680 T: +61 7 4972 7530 E: office@visionenvironment.com.au

SYDNEY

A: Level 6, 69 Reservoir Street Surry Hills, NSW 2010 T: +61 2 8217 0706 E: sydney@trinityconsultants.com

BT TONE

Acoustics • Air Quality • Marine Ecology • Noise • Stack Testing • Water Quality